1. Introduction

1.1. Problem Definition. The minimax theorem proved by John von Neumann in 1928 states that for every $m \times n$ matrix $A \in \mathbb{R}^{m \times n}$ and probability vectors $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$

\begin{align*}
 x \in X := \left\{ x \in \mathbb{R}^{n} : \sum_{j=1}^{n} x_{j} = 1 \right\} \\
 y \in Y := \left\{ y \in \mathbb{R}^{m} : \sum_{i=1}^{m} y_{i} = 1 \right\}
\end{align*}

the following relation holds

\begin{align*}
 \max_{x \in X} \min_{y \in Y} y^{\prime}Ax &= \min_{y \in Y} \max_{x \in X} y^{\prime}Ax
\end{align*}

We call the vectors x^{\ast}, y^{\ast} a minimax solution of A if they satisfy (1.3). The scalar $v^{\ast} = (y^{\ast})^{\prime}Ax^{\ast}$ is the value at the equilibrium point and in a game theory context it is called the game value. For any other vectors $x \in X, y \in Y$ it will be

\begin{align*}
 y^{\prime}Ax^{\ast} \geq v^{\ast} = (y^{\ast})^{\prime}Ax^{\ast} \geq (y^{\ast})^{\prime}A x \quad \forall x \in X, \forall y \in Y
\end{align*}

Finding one (not necessarily unique) pair of vectors x^{\ast}, y^{\ast} satisfying (1.4) solves the minimax problem.

We call a pure strategy any probability vector for which

\begin{align*}
 x_{j=k} = 1, \ x_{j\neq k} = 0, \ 1 \leq k \leq n \\
 y_{i=k} = 1, \ y_{i\neq k} = 0, \ 1 \leq k \leq m
\end{align*}

A pure strategy for y can always be applied in (1.3), therefore we may conclude that x^{\ast} is not optimal unless

\begin{align*}
 \rho^{\ast} = \min_{0 \leq i \leq m} A x^{\ast} = v^{\ast}
\end{align*}

and also for the same reason y^{\ast} is not optimal unless

\begin{align*}
 \gamma^{\ast} = \max_{0 \leq j \leq n} (y^{\ast})^{\prime}A = v^{\ast}
\end{align*}

therefore

\begin{align*}
 \rho^{\ast} = \gamma^{\ast} = v^{\ast}
\end{align*}
It can be easily shown that the reverse statement is also true. If for any probability vectors \(\mathbf{x}, \mathbf{y} \)

\[
(1.10) \quad \rho = \min_{0 \leq i \leq m} \mathbf{Ax} = \max_{0 \leq j \geq n} \mathbf{y}'\mathbf{A} = \gamma
\]

then the vectors \(\mathbf{x}, \mathbf{y} \) consist a minimax solution.

Obviously for any pair of non-optimal vectors \(\mathbf{x}, \mathbf{y} \) it will be

\[
(1.11) \quad \rho = \min_{0 \geq i \geq m} \mathbf{Ax} \leq v^* \leq \max_{0 \geq j \geq n} \mathbf{y}'\mathbf{A} = \gamma
\]

with \(\gamma > \rho \). We call the positive difference

\[
(1.12) \quad \delta = \gamma - \rho \geq 0
\]

the \textit{duality gap}. Any algorithm which gradually reduces the duality gap to zero, solves the minimax problem.

2. The new Algorithm

2.1. Preliminaries. We are given a \(m \times n \) matrix \(\mathbf{A} \) and we are asked to compute a minimax solution for this matrix. Without loss of generality we will assume that \(\mathbf{A} \) contains elements within the range \([0, 1]\). If not, we may apply a transformation to all matrix elements so that

\[
(2.1) \quad a_{i,j} = \frac{a_{i,j} - a_{\text{min}}}{a_{\text{max}} - a_{\text{min}}}
\]

where \(a_{\text{min}}, a_{\text{max}} \) denote the minimum and the maximum of the matrix elements respectively. Let \(\mathbf{U} \) be a \(m \times n \) matrix with every elements equal to 1. It can be easily shown that any matrix \(\mathbf{B} \) in the form

\[
(2.2) \quad \mathbf{B} = c_1 \cdot (\mathbf{A} + c_2 \cdot \mathbf{U})
\]

shares the same minimax solutions as matrix \(\mathbf{A} \). Selecting suitable constants \(c_1, c_2 \) can ensure that all matrix elements will fall within the range \([0, 1]\).
2.2. The Algorithm. With the assumption that A contains elements in the range $[0, 1]$ the following algorithm minimizes the duality gap.

Algorithm 1: Bluebit (US Patent 7,991,713 B2 - international patents pending)

```plaintext
input : $m \times n$ matrix $A$, number of iterations $T$
output: mixed strategies $y^* \in \mathbb{R}^m, x^* \in \mathbb{R}^n$ , duality gap $d^*$

1 begin
2    $x_j \leftarrow 1/n \quad \forall 1 \leq j \leq n$
3    $y_i \leftarrow 1/m \quad \forall 1 \leq i \leq m$
4    $h \leftarrow Ax$
5    $g \leftarrow y'A$
6    $\rho \leftarrow \min h$
7    $\gamma \leftarrow \max g$
8    $\rho_{max} \leftarrow \rho$
9    $\gamma_{min} \leftarrow \gamma$
10   $v \leftarrow \gamma_{min} + \rho_{max}$
11 for $t = 1$ to $T$ do
12    $\Delta x_j \leftarrow (g_j - v) \cdot [g_j > v]$
13    $x \leftarrow (1 - \gamma + \rho) \cdot x + (\gamma - \rho) \cdot \frac{\Delta x}{\sum_{j=1}^n \Delta x_j}$
14    $h \leftarrow Ax$
15    $\rho \leftarrow \min h$
16    if $\rho > \rho_{max}$ then
17        $\rho_{max} \leftarrow \rho$
18        $x^* \leftarrow x$
19        $v \leftarrow \gamma_{min} + \rho_{max}$
20    end if
21    $\Delta y_i \leftarrow (v - h_i) \cdot [h_i < v]$
22    $y \leftarrow (1 - \gamma + \rho) \cdot y + (\gamma - \rho) \cdot \frac{\Delta y}{\sum_i \Delta y_i}$
23    $g \leftarrow y'A$
24    $\gamma \leftarrow \max g$
25    if $\gamma < \gamma_{min}$ then
26        $\gamma_{min} \leftarrow \gamma$
27        $y^* \leftarrow y$
28        $v \leftarrow \gamma_{min} + \rho_{max}$
29    end if
30 end for
31 $d^* = \gamma_{min} - \rho_{max}$
32 end
```
2.3. Description.

2.3.1. Lines 2-3. In the initialization part of the algorithm we initialize all elements of \(x \) to \(1/n \) and all elements of \(y \) to \(1/m \). Any other probability distribution can be used to initialize the vectors \(x, y \).

2.3.2. Lines 4-5. We create \(h \), an \(m \) dimensional vector as the result of the matrix-vector multiplication \(Ax \). Therefore each element of \(h \) will be equal to
\[
h_i = \sum_{j=1}^{n} a_{i,j} x_j \quad \forall \ 0 \leq i \leq m
\]
In the same way we create \(g \), a \(n \) dimensional vector being the result of the vector-matrix multiplication \(y' A \), having each of its elements equal to
\[
g_j = \sum_{i=1}^{m} a_{i,j} y_i \quad \forall \ 0 \leq j \leq n
\]

2.3.3. Lines 6-9. We set \(\rho \) to the minimum element of the vector \(h \) and \(\gamma \) to the maximum element of the vector \(g \). We also initialize \(\rho_{max} \) to \(\rho \) and \(\gamma_{min} \) to \(\gamma \).

2.3.4. Line 10. We define \(v \) as the middle point of \(\gamma_{min} \) and \(\rho_{max} \).

2.3.5. Line 11-30. We repeat for a number of \(T \) iterations.

2.3.6. Lines 12-13. We define \(n \)-dimensional vector \(\Delta x \) as an update step for the vector \(x \). We set each \(\Delta x_j \) equal to
\[
\Delta x_j = \begin{cases}
 g_j - v & \text{if } g_j > v \\
 0 & \text{if } g_j \leq v
\end{cases}
\]
We then normalize \(\Delta x \) so that \(\sum_{j=1}^{n} \Delta x_j = 1 \) and we update \(x \) as
\[
x \leftarrow (1 - d) \cdot x + d \cdot \Delta x
\]
where \(d = \gamma - \rho \) is the current duality gap.

2.3.7. Lines 14-15. We compute the new value for \(h \) using the updated value of \(x \) and also we update the value of \(\rho \) as \(\min h \)

2.3.8. Lines 16-20. If the previous update of \(x \) has achieved a better (bigger) \(\rho \), then we update the value of \(\rho_{max} \), we use this new value of \(\rho_{max} \) to update \(v \) and we record \(x^* \) as the best up to now value for \(x \).

In the second part of the iteration we repeat the same actions for \(y \) in an symmetric way except that the inequalities and signs are reversed.

2.3.9. Lines 21-22. We define \(m \)-dimensional vector \(\Delta y \) as an update step for \(y \) with each \(\Delta y_i \) equal to
\[
\Delta y_i = \begin{cases}
 v - h_i & \text{if } h_i < v \\
 0 & \text{if } h_i \geq v
\end{cases}
\]
We then normalize \(\Delta y \) so that \(\sum_{i=1}^{m} \Delta y_i = 1 \) and we update \(y \) as
\[
y \leftarrow (1 - d) \cdot y + d \cdot \Delta y
\]
where \(d = \gamma - \rho \) is the current duality gap.
2.3.10. **Lines 23-24.** We compute the new value for g using the updated value of y and also we update the value of γ as $\max g$.

2.3.11. **Lines 25-29.** If the previous update of y has achieved a better (smaller) γ, then we update the value of γ_{min}, we use this new value of γ_{min} to update v and we record y^* as the best up to now value for y.

2.3.12. **Line 30.** The duality gap achieved is $\gamma_{\text{min}} - \rho_{\text{max}}$.

3. Upper Bound for the Duality Gap

Numerical experiments on a big number of random matrices have shown that for square matrices ($m=n$) the duality gap achieved by the algorithm ($\gamma_{\text{min}} - \rho_{\text{max}}$) is upper bounded by $1/T$ where T denotes the number of iterations. For non-square matrices this also holds when $T > \max\{m, n\}$. Figure 1 displays a graph of the duality gap together with this upper limit versus the number of iterations.

![Duality Gap Graph](image-url)

Figure 1. The duality gap $d = \gamma_{\text{min}} - \rho_{\text{max}}$ (red line) and its upper bound $1/T$ (blue line) versus the number of iterations for a random 100×100 matrix.

Trifon Triantafillidis
26 Kofidou, 55236 Panorama, Thessaloniki, Greece

E-mail address, Trifon Triantafillidis: trifon@bluebit.gr

URL: http://www.bluebit.gr