BLUEBIT ASD ALGORITHM

T. TRIANTAFILLIDIS

1. Introduction

1.1. **Problem Definition.** The minimax theorem proved by John von Neumann in 1928 states that for every $m \times n$ matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and probability vectors $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$

(1.1)
$$\mathbf{x} \in \mathcal{X} := \left\{ \mathbf{x} \in \mathbb{R}^n : \sum_{j=1}^n x_j = 1 \right\}$$

(1.2)
$$\mathbf{y} \in \mathcal{Y} := \left\{ \mathbf{y} \in \mathbb{R}^m : \sum_{i=1}^m y_i = 1 \right\}$$

the following relation holds

(1.3)
$$\max_{\mathbf{x} \in \mathcal{X}} \min_{\mathbf{y} \in \mathcal{Y}} \mathbf{y}' \mathbf{A} \mathbf{x} = \min_{\mathbf{y} \in \mathcal{Y}} \max_{\mathbf{x} \in \mathcal{X}} \mathbf{y}' \mathbf{A} \mathbf{x}$$

We call the vectors $\mathbf{x}^*, \mathbf{y}^*$ a minimax solution of \mathbf{A} if they satisfy (1.3). The scalar $v^* = (\mathbf{y}^*)' \mathbf{A} \mathbf{x}^*$ is the value at the equilibrium point and in a game theory context it is called the *game value*. For any other vectors $\mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}$ it will be

(1.4)
$$\mathbf{y}' \mathbf{A} \mathbf{x}^* \ge v^* = (\mathbf{y}^*)' \mathbf{A} \mathbf{x}^* \ge (\mathbf{y}^*)' \mathbf{A} \mathbf{x} \quad \forall \mathbf{x} \in \mathcal{X}, \forall \mathbf{y} \in \mathcal{Y}$$

Finding one (not necessarily unique) pair of vectors $\mathbf{x}^*, \mathbf{y}^*$ satisfying (1.4) solves the minimax problem.

We call a *pure strategy* any probability vector for which

$$(1.5) x_{i=k} = 1, \ x_{i \neq k} = 0, \ 1 \le k \le n$$

$$(1.6) y_{i=k} = 1, \ y_{i\neq k} = 0, \ 1 \le k \le m$$

A pure strategy for \mathbf{y} can always be applied in (1.3), therefore we may conclude that \mathbf{x}^* is not optimal unless

$$\rho^* = \min_{0 \le i \le m} \mathbf{A} \mathbf{x}^* = v^*$$

and also for the same reason y^* is not optimal unless

(1.8)
$$\gamma^* = \max_{0 \le j \le n} (\mathbf{y}^*)' \mathbf{A} = v^*$$

therefore

$$\rho^* = \gamma^* = v^*$$

 $Date \hbox{: June 01, 2007.}$

It can be easily shown that the reverse statement is also true. If for any probability vectors \mathbf{x}, \mathbf{y}

(1.10)
$$\rho = \min_{0 \le i \le m} \mathbf{A} \mathbf{x} = \max_{0 \le j \ge n} \mathbf{y}' \mathbf{A} = \gamma$$

then the vectors \mathbf{x}, \mathbf{y} consist a minimax solution.

Obviously for any pair of non optimal vectors \mathbf{x}, \mathbf{y} it will be

(1.11)
$$\rho = \min_{0 \ge i \ge m} \mathbf{A} \mathbf{x} \le v^* \le \max_{0 \ge j \ge n} \mathbf{y}' \mathbf{A} = \gamma$$

with $\gamma > \rho$. We call the positive difference

$$(1.12) d = \gamma - \rho \ge 0$$

the *duality gap*. Any algorithm which gradually reduces the duality gap to zero, solves the minimax problem.

2. The New Algorithm

2.1. **Preliminaries.** We are given a $m \times n$ matrix **A** and we are asked to compute a minimax solution for this matrix. Without loss of generality we will assume that **A** contains elements within the range [0,1]. If not, we may apply a transformation to all matrix elements so that

(2.1)
$$a_{i,j} = \frac{a_{i,j} - a_{min}}{a_{max} - a_{min}}$$

where a_{min}, a_{max} denote the minimum and the maximum of the matrix elements respectively. Let **U** be a $m \times n$ matrix with every elements equal to 1. It can be easily shown that any matrix **B** in the form

$$\mathbf{B} = c_1 \cdot (\mathbf{A} + c_2 \cdot \mathbf{U})$$

shares the same minimax solutions as matrix **A**. Selecting suitable constants c_1, c_2 can ensure that all matrix elements will fall within the range [0, 1].

2.2. **The Algorithm.** With the assumption that **A** contains elements in the range [0,1] the following algorithm minimizes the duality gap.

Algorithm 1: Bluebit (US Patent 7,991,713 B2 - international patents pending)

```
input: m \times n matrix A, number of iterations T
       output: mixed strategies \mathbf{y}^* \in \mathbf{R}^m, \mathbf{x}^* \in \mathbf{R}^n, duality gap d^*
  1 begin
               x_i \leftarrow 1/n \quad \forall \ 1 \le j \le n
  \mathbf{2}
               y_i \leftarrow 1/m \quad \forall \ 1 \le i \le m
  3
               \mathbf{h} \leftarrow \mathbf{A}\mathbf{x}
               \mathbf{g} \leftarrow \mathbf{y}' \mathbf{A}
               \rho \leftarrow \min \mathbf{h}
  6
               \gamma \leftarrow \max \mathbf{g}
  7
  8
               \rho_{max} \leftarrow \rho
  9
               \gamma_{min} \leftarrow \gamma
              v \leftarrow \frac{\gamma_{min} + \rho_{max}}{2}
10
               \mathbf{for}\ t = 1\ to\ T\ \mathbf{do}
11
                      \Delta x_j \leftarrow (g_j - v) \cdot [g_j > v]
12
                      \mathbf{x} \leftarrow (1 - \gamma + \rho) \cdot \mathbf{x} + (\gamma - \rho) \cdot \frac{\Delta \mathbf{x}}{\sum_{j=1}^{n} \Delta x_j}
13
                      \mathbf{h} \leftarrow \mathbf{A}\mathbf{x}
14
                       \rho \leftarrow \min \mathbf{h}
15
                       if \rho > \rho_{max} then
16
                            \rho_{max} \leftarrow \rho
17
18
                             v \leftarrow \frac{\gamma_{min} + \rho_{max}}{2}
19
20
                      \Delta y_i \leftarrow (v - h_i) \cdot [h_i < v]
21
                      \mathbf{y} \leftarrow (1 - \gamma + \rho) \cdot \mathbf{y} + (\gamma - \rho) \cdot \frac{\Delta \mathbf{y}}{\sum_{i} \Delta y_{i}}
22
                       \mathbf{g} \leftarrow \mathbf{y}' \mathbf{A}
23
                       \gamma \leftarrow \max \mathbf{g}
24
                       if \gamma < \gamma_{min} then
25
                              \gamma_{min} \leftarrow \gamma
26
                             \mathbf{y}^* \leftarrow \mathbf{y}v \leftarrow \frac{\gamma_{min} + \rho_{max}}{2}
27
28
29
                       end if
               end for
30
               d^* = \gamma_{min} - \rho_{max}
31
32 end
```

2.3. Description.

4

2.3.1. Lines 2-3. In the initialization part of the algorithm we initialize all elements of \mathbf{x} to 1/n and all elements of \mathbf{y} to 1/m. Any other probability distribution can be used to initialize the vectors \mathbf{x}, \mathbf{y} .

2.3.2. Lines 4-5. We create \mathbf{h} , a m dimensional vector as the result of the matrix-vector multiplication $\mathbf{A}\mathbf{x}$. Therefore each element of \mathbf{h} will be equal to

$$h_i = \sum_{j=1}^n a_{i,j} x_j \quad \forall \ 0 \le i \le m$$

In the same way we create \mathbf{g} , a n dimensional vector being the result of the vector-matrix multiplication $\mathbf{y'A}$, having each of its elements equal to

$$g_j = \sum_{i=1}^m a_{i,j} y_i \quad \forall \ 0 \le j \le n$$

2.3.3. Lines 6-9. We set ρ to the minimum element of the vector \mathbf{h} and γ to the maximum element of the vector \mathbf{g} . We also initialize ρ_{max} to ρ and γ_{min} to γ .

2.3.4. Line 10. We define v as the middle point of γ_{min} and ρ_{max} .

2.3.5. Line 11-30. We repeat for a number of T iterations.

2.3.6. Lines 12-13. We define n-dimensional vector $\Delta \mathbf{x}$ as an update step for the vector \mathbf{x} . We set each Δx_j equal to

$$\Delta x_j = \begin{cases} g_j - v & \text{if } g_j > v \\ 0 & \text{if } g_j \le v \end{cases}$$

We then normalize $\Delta \mathbf{x}$ so that $\sum_{j=1}^{n} \Delta x_j = 1$ and we update \mathbf{x} as

$$\mathbf{x} \leftarrow (1 - d) \cdot \mathbf{x} + d \cdot \Delta \mathbf{x}$$

where $d = \gamma - \rho$ is the current duality gap.

2.3.7. Lines 14-15. We compute the new value for **h** using the updated value of **x** and also we update the value of ρ as min **h**

2.3.8. Lines 16-20. If the previous update of \mathbf{x} has achieved a better (bigger) ρ , then we update the value of ρ_{max} , we use this new value of ρ_{max} to update v and we record \mathbf{x}^* as the best up to now value for \mathbf{x} .

In the second part of the iteration we repeat the same actions for y in an symmetric way except that the inequalities and signs are reversed.

2.3.9. Lines 21-22. We define a m-dimensional vector $\Delta \mathbf{y}$ as an update step for \mathbf{y} with each Δy_i equal to

$$\Delta y_i = \begin{cases} v - h_i & \text{if } h_i < v \\ 0 & \text{if } h_i \ge v \end{cases}$$

We then normalize $\Delta \mathbf{y}$ so that $\sum_{i=1}^{m} \Delta y_i = 1$ and we update \mathbf{y} as

$$\mathbf{v} \leftarrow (1 - d) \cdot \mathbf{v} + d \cdot \Delta \mathbf{v}$$

where $d = \gamma - \rho$ is the current duality gap.

2.3.10. Lines 23-24. We compute the new value for \mathbf{g} using the updated value of \mathbf{y} and also we update the value of γ as max \mathbf{g}

2.3.11. Lines 25-29. If the previous update of \mathbf{y} has achieved a better (smaller) γ , then we update the value of γ_{min} , we use this new value of γ_{min} to update v and we record \mathbf{y}^* as the best up to now value for \mathbf{y} .

2.3.12. Line 30. The duality gap achieved is $\gamma_{min} - \rho_{max}$

3. Upper Bound for the Duality Gap

Numerical experiments on a big number of random matrices have shown that for square matrices (m=n) the duality gap achieved by the algorithm $(\gamma_{min}-\rho_{max})$ is upper bounded by 1/T where T denotes the number of iterations. For non-square matrices this also holds when $T>\max\{m,n\}$. Figure 1 displays a graph of the duality gap together with this upper limit versus the number of iterations.

FIGURE 1. The duality gap $d = \gamma_{min} - \rho_{max}$ (red line) and its upper bound 1/T (blue line) versus the number of iterations for a random 100×100 matrix.

TRIFON TRIANTAFILLIDIS
26 KOFIDOU,
55236 PANORAMA,
THESSALONIKI, GREECE
E-mail address, Trifon Triantafillidis: trifon@bluebit.gr
URL: http://www.bluebit.gr