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1. Introduction

1.1. Problem Definition. The minimax theorem proved by John von Neumann
in 1928 states that for every m × n matrix A ∈ Rm×n and probability vectors
x ∈ Rn and y ∈ Rm

x ∈ X :=

x ∈ Rn :

n∑
j=1

xj = 1

(1.1)

y ∈ Y :=

{
y ∈ Rm :

m∑
i=1

yi = 1

}
(1.2)

the following relation holds

(1.3) max
x∈X

min
y∈Y

y′Ax = min
y∈Y

max
x∈X

y′Ax

We call the vectors x∗,y∗ a minimax solution of A if they satisfy (1.3). The scalar
v∗ = (y∗)′Ax∗ is the value at the the equilibrium point and in a game theory
context it is called the game value. For any other vectors x ∈ X ,y ∈ Y it will be

y′Ax∗ ≥ v∗ = (y∗)′Ax∗ ≥ (y∗)′Ax ∀x ∈ X ,∀y ∈ Y(1.4)

Finding one (not necessarily unique) pair of vectors x∗,y∗ satisfying (1.4) solves
the minimax problem.

We call a pure strategy any probability vector for which

xj=k = 1, xj 6=k = 0, 1 ≤ k ≤ n(1.5)

yi=k = 1, yi 6=k = 0, 1 ≤ k ≤ m(1.6)

A pure strategy for y can always be applied in (1.3), therefore we may conclude
that x∗ is not optimal unless

(1.7) ρ∗ = min
0≤i≤m

Ax∗ = v∗

and also for the same reason y∗ is not optimal unless

(1.8) γ∗ = max
0≤j≤n

(y∗)′A = v∗

therefore

(1.9) ρ∗ = γ∗ = v∗
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It can be easily shown that the reverse statement is also true. If for any probability
vectors x,y

(1.10) ρ = min
0≤i≤m

Ax = max
0≤j≥n

y′A = γ

then the vectors x,y consist a minimax solution.
Obviously for any pair of non optimal vectors x,y it will be

(1.11) ρ = min
0≥i≥m

Ax ≤ v∗ ≤ max
0≥j≥n

y′A = γ

with γ > ρ. We call the positive difference

(1.12) d = γ − ρ ≥ 0

the duality gap. Any algorithm which gradually reduces the duality gap to zero,
solves the minimax problem.

2. The new Algorithm

2.1. Preliminaries. We are given a m×n matrix A and we are asked to compute
a minimax solution for this matrix. Without loss of generality we will assume that
A contains elements within the range [0, 1]. If not, we may apply a transformation
to all matrix elements so that

(2.1) ai,j =
ai,j − amin

amax − amin

where amin, amax denote the minimum and the maximum of the matrix elements
respectively. Let U be a m × n matrix with every elements equal to 1. It can be
easily shown that any matrix B in the form

(2.2) B = c1 · (A + c2 ·U)

shares the same minimax solutions as matrix A. Selecting suitable constants c1, c2
can ensure that all matrix elements will fall within the range [0, 1].
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2.2. The Algorithm. With the assumption that A contains elements in the range
[0, 1] the following algorithm minimizes the duality gap.

Algorithm 1: Bluebit (US Patent 7,991,713 B2 - international patents pend-
ing)

input : m× n matrix A, number of iterations T
output: mixed strategies y∗ ∈ Rm,x∗ ∈ Rn, duality gap d∗

1 begin
2 xj ← 1/n ∀ 1 ≤ j ≤ n
3 yi ← 1/m ∀ 1 ≤ i ≤ m
4 h← Ax

5 g← y′A

6 ρ← min h

7 γ ← max g

8 ρmax ← ρ

9 γmin ← γ

10 v ← γmin + ρmax

2
11 for t = 1 to T do
12 ∆xj ← (gj − v) · [gj > v]

13 x← (1− γ + ρ) · x + (γ − ρ) · ∆x∑n
j=1 ∆xj

14 h← Ax

15 ρ← min h

16 if ρ > ρmax then
17 ρmax ← ρ

18 x∗ ← x

19 v ← γmin + ρmax

2
20 end if

21 ∆yi ← (v − hi) · [hi < v]

22 y← (1− γ + ρ) · y + (γ − ρ) · ∆y∑
i ∆yi

23 g← y′A

24 γ ← max g

25 if γ < γmin then
26 γmin ← γ

27 y∗ ← y

28 v ← γmin + ρmax

2
29 end if

30 end for

31 d∗ = γmin − ρmax

32 end
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2.3. Description.

2.3.1. Lines 2-3. In the initialization part of the algorithm we initialize all elements
of x to 1/n and all elements of y to 1/m. Any other probability distribution can
be used to initialize the vectors x,y.

2.3.2. Lines 4-5. We create h, a m dimensional vector as the result of the matrix-
vector multiplication Ax. Therefore each element of h will be equal to

hi =

n∑
j=1

ai,jxj ∀ 0 ≤ i ≤ m

In the same way we create g, a n dimensional vector being the result of the vector-
matrix multiplication y′A, having each of its elements equal to

gj =

m∑
i=1

ai,jyi ∀ 0 ≤ j ≤ n

2.3.3. Lines 6-9. We set ρ to the minimum element of the vector h and γ to the
maximum element of the vector g. We also initialize ρmax to ρ and γmin to γ.

2.3.4. Line 10. We define v as the middle point of γmin and ρmax.

2.3.5. Line 11-30. We repeat for a number of T iterations.

2.3.6. Lines 12-13. We define n-dimensional vector ∆x as an update step for the
vector x. We set each ∆xj equal to

∆xj =

{
gj − v if gj > v

0 if gj ≤ v

We then normalize ∆x so that
∑n

j=1 ∆xj = 1 and we update x as

x← (1− d) · x + d ·∆x

where d = γ − ρ is the current duality gap.

2.3.7. Lines 14-15. We compute the new value for h using the updated value of x
and also we update the value of ρ as min h

2.3.8. Lines 16-20. If the previous update of x has achieved a better (bigger) ρ,
then we update the value of ρmax, we use this new value of ρmax to update v and
we record x∗ as the best up to now value for x.

In the second part of the iteration we repeat the same actions for y in an sym-
metric way except that the inequalities and signs are reversed.

2.3.9. Lines 21-22. We define a m-dimensional vector ∆y as an update step for y
with each ∆yi equal to

∆yi =

{
v − hi if hi < v

0 if hi ≥ v
We then normalize ∆y so that

∑m
i=1 ∆yi = 1 and we update y as

y← (1− d) · y + d ·∆y

where d = γ − ρ is the current duality gap.
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2.3.10. Lines 23-24. We compute the new value for g using the updated value of
y and also we update the value of γ as max g

2.3.11. Lines 25-29. If the previous update of y has achieved a better (smaller) γ,
then we update the value of γmin, we use this new value of γmin to update v and
we record y∗ as the best up to now value for y.

2.3.12. Line 30. The duality gap achieved is γmin − ρmax

3. Upper Bound for the Duality Gap

Numerical experiments on a big number of random matrices have shown that for
square matrices (m = n) the duality gap achieved by the algorithm (γmin−ρmax) is
upper bounded by 1/T where T denotes the number of iterations. For non-square
matrices this also holds when T > max{m,n}. Figure 1 displays a graph of the
duality gap together with this upper limit versus the number of iterations.
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Figure 1. The duality gap d = γmin − ρmax (red line) and its
upper bound 1/T (blue line) versus the number of iterations for a
random 100× 100 matrix.
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